Finite element modeling technique for predicting mechanical behaviors on mandible bone during mastication
نویسندگان
چکیده
PURPOSE The purpose of this study was to propose finite element (FE) modeling methods for predicting stress distributions on teeth and mandible under chewing action. MATERIALS AND METHODS For FE model generation, CT images of skull were translated into 3D FE models, and static analysis was performed considering linear material behaviors and nonlinear geometrical effect. To find out proper boundary and loading conditions, parametric studies were performed with various areas and directions of restraints and loading. The loading directions are prescribed to be same as direction of masseter muscle, which was referred from anatomy chart and CT image. From the analysis, strain and stress distributions of teeth and mandible were obtained and compared with experimental data for model validation. RESULTS As a result of FE analysis, the optimized boundary condition was chosen such that 8 teeth were fixed in all directions and condyloid process was fixed in all directions except for forward and backward directions. Also, fixing a part of mandible in a lateral direction, where medial pterygoid muscle was attached, gave the more proper analytical results. Loading was prescribed in a same direction as masseter muscle. The tendency of strain distributions between the teeth predicted from the proposed model were compared with experimental results and showed good agreements. CONCLUSION This study proposes cost efficient FE modeling method for predicting stress distributions on teeth and mandible under chewing action. The proposed modeling method is validated with experimental data and can further be used to evaluate structural safety of dental prosthesis.
منابع مشابه
Bone Remodeling Response During Mastication on Free-End Removable Prosthesis – a 3D Finite Element Analysis
An understanding of functional responses in oral bone is a crucial component of dental biomechanics. The purpose of this study was to investigate the use of an osseointegrated implant as support for a free-end removable partial denture (RPD) on the potential biological remodelling response during mastication. A three-dimensional (3D) finite element analysis (FEA) was performed to determine the ...
متن کاملMechanics of the Right Whale Mandible: Full Scale Testing and Finite Element Analysis
In an effort to better understand the mechanics of ship-whale collision and to reduce the associated mortality of the critically endangered North Atlantic right whale, a comprehensive biomechanical study has been conducted by the Woods Hole Oceanographic Institution and the University of New Hampshire. The goal of the study is to develop a numerical modeling tool to predict the forces and stres...
متن کاملThree-dimensional finite element analysis of unilateral mastication in malocclusion cases using cone-beam computed tomography and a motion capture system
PURPOSE Stress distribution and mandible distortion during lateral movements are known to be closely linked to bruxism, dental implant placement, and temporomandibular joint disorder. The present study was performed to determine stress distribution and distortion patterns of the mandible during lateral movements in Class I, II, and III relationships. METHODS Five Korean volunteers (one normal...
متن کاملStress Analysis of an Endosseus Dental Implant by BEM and FEM
In this work the Boundary Element Method (BEM) and the Finite Element Method (FEM) have been used for an elastic-static analysis of both a Branemark dental implant and a generic conic threaded implant, modelled either in the complete mandible or in a mandibular segment, under axial and lateral loading conditions. Two different hypotheses are considered with reference to degree of osteo-integrat...
متن کاملFinite element analysis of the mechanical behavior of a partially edentulous mandible as a function of cancellous bone density
Methods: A 3D finite element method was used to assess the model of a partially edentulous mandible, Kennedy Class I, with dental implants placed at the region of teeth 33 and 43. The geometric solid model was built from CT-scan images and prototyping. In the discrete model a parametric analysis was performed to analyze the influence of cancellous bone density (25 %, 50 %, 75 %) on the developm...
متن کامل